

(12) United States Patent

Alex et al.

US 9,171,575 B1 (10) Patent No.: (45) **Date of Patent:** Oct. 27, 2015

(54)	DATA STORAGE DEVICE DETECTING
	MEDIA DEFECTS BY WRITING OPPOSITE
	POLARITY TEST PATTERN

(71) Applicant: Western Digital Technologies, Inc.,

Irvine, CA (US)

(72) Inventors: Michael Alex, Fremont, CA (US);

Gerardo A. Bertero, Redwood City, CA (US); Mazin Almaqablah, San Jose, CA

(73) Assignee: Western Digital Technologies, Inc.,

Irvine, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

- (21) Appl. No.: 14/312,431
- (22) Filed: Jun. 23, 2014
- (51) Int. Cl. G11B 5/09 (2006.01)G11B 20/18 (2006.01)(2006.01)G11B 5/012 G11B 20/10 (2006.01)G11B 27/36 (2006.01)G11B 5/024 (2006.01)

(52) U.S. Cl.

CPC G11B 20/182 (2013.01); G11B 5/012 (2013.01); G11B 5/024 (2013.01); G11B 20/10009 (2013.01); G11B 27/36 (2013.01)

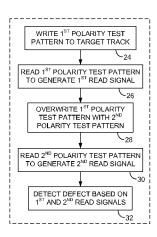
(58) Field of Classification Search

See application file for complete search history.

References Cited (56)

U.S. PATENT DOCUMENTS

4,949,036 A *	8/1990	Bezinque et al.	 360/31
6,018,789 A	1/2000	Sokolov et al.	


6,065,095	A	5/2000	Sokolov et al.
6,078,452	A	6/2000	Kittilson et al.
6,081,447	A	6/2000	Lofgren et al.
6,092,149	A	7/2000	Hicken et al.
6,092,150	A	7/2000	Sokolov et al.
6,094,707	A	7/2000	Sokolov et al.
6,105,104	A	8/2000	Guttmann et al.
6,111,717	A	8/2000	Cloke et al.
6,145,052	A	11/2000	Howe et al.
6,175,893	B1	1/2001	D'Souza et al.
6,178,056	B1	1/2001	Cloke et al.
6,191,909	B1	2/2001	Cloke et al.
6,195,218	B1	2/2001	Guttmann et al.
6,205,494	B1	3/2001	Williams
6,208,477	B1	3/2001	Cloke et al.
6,223,303	B1	4/2001	Billings et al.
6,230,233	B1	5/2001	Lofgren et al.
6,246,346	B1	6/2001	Cloke et al.
6,249,393	B1	6/2001	Billings et al.
6,256,695	B1	7/2001	Williams
6,262,857	B1	7/2001	Hull et al.
6,263,459	B1	7/2001	Schibilla
6,278,568	B1	8/2001	Cloke et al.
6,279,089	B1	8/2001	Schibilla et al.
6,289,484	B1	9/2001	Rothberg et al.
6,292,912	B1	9/2001	Cloke et al.
6,310,740	B1	10/2001	Dunbar et al.
6,317,850	B1	11/2001	Rothberg
6,327,106	B1	12/2001	Rothberg
6,337,778	B1	1/2002	Gagne
6,369,969	B1	4/2002	Christiansen et al.
		(Cont	inuod)
		(COIII	tinued)

Primary Examiner — Muhammad N Edun

(57)ABSTRACT

A data storage device is disclosed comprising a disk comprising a plurality of tracks, and a head actuated over the disk. A first test pattern having a first polarity is written to a target track, and the first test pattern is read to generate a first read signal. The first test pattern is overwritten with a second test pattern having a second polarity opposite the first polarity, and the second test pattern is read to generate a second read signal. A defect in the target track is detected based on the first read signal and the second read signal.

18 Claims, 4 Drawing Sheets

US 9,171,575 B1 Page 2

(56)		Refe	ren	ces Cited	6,757,481			Nazarian et al.
	I	IS PATE	NT	DOCUMENTS	6,772,281 6,781,826			Hamlin Goldstone et al.
				DOCOMENTO	6,782,449		8/2004	Codilian et al.
6,384	4,999 E	31 5/20	002	Schibilla	6,791,779			Singh et al.
	8,833 E			Golowka et al.	6,792,486 6,799,274			Hanan et al. Hamlin
	5,342 E			Lee	6,811,427			Garrett et al.
6,408	8,357 E 8,406 E	81 6/20		Hanmann et al. Parris	6,826,003			Subrahmanyam
	1,452 E			Cloke	6,826,614			Hanmann et al.
	1,458 E		002	Billings et al.	6,832,041		12/2004	
6,412	2,083 E	31 6/20		Rothberg et al.	6,832,929 6,845,405		1/2004	Garrett et al.
	5,349 E 5,128 E			Hull et al. Krapf et al.	6,845,427			Atai-Azimi
	1,981 E			Cloke et al.	6,850,443	B2		Lofgren et al.
	2,328 E			Elliott et al.	6,851,055			Boyle et al.
	5,524 E			Nazarian et al.	6,851,063 6,853,514			Boyle et al. Li et al.
	9,767 E 3,115 E			Krapf et al. Boyle	6,853,731			Boyle et al.
	0,420 E			Hospodor	6,854,022	B1	2/2005	Thelin
	0,020 E			Jung et al.	6,862,660			Wilkins et al.
	0,349 E			Kim et al.	6,880,043 6,882,486			Castro et al. Kupferman
	0,932 E 3,986 E			Vallis et al. Krapf	6,884,085			Goldstone
	7,032 E			Cloke et al.	6,888,831			Hospodor et al.
6,490	0,635 E	31 12/20		Holmes	6,892,217			Hanmann et al.
	3,173 E			Kim et al.	6,892,249 6,892,313			Codilian et al. Codilian et al.
	9,083 E 9,104 E			Hamlin Cloke et al.	6,895,455			Rothberg
	5,892 E			Dunbar et al.	6,895,500			Rothberg
	5,830 E			Briggs et al.	6,898,730		5/2005	
	5,489 E	31 4/20	003	Frank, Jr. et al.	6,910,099			Wang et al. Hamlin
	0,021 E			Dalphy et al.	6,928,470 6,931,439			Hanmann et al.
	2,880 E 3,457 E			Dunbar et al. Wilkins et al.	6,934,104			Kupferman
	8,106 E			Price	6,934,713			Schwartz et al.
6,580	0,573 E	31 6/20		Hull et al.	6,940,873			Boyle et al.
	4,183 E			Lofgren et al.	6,943,978 6,948,165		9/2005 9/2005	Lee Luu et al.
	0,620 E 1,137 E			Krounbi et al. Castro et al.	6,950,267			Liu et al.
	3,622 E			Christiansen et al.	6,954,733			Ellis et al.
6,603	3,625 E	31 8/20	003	Hospodor et al.	6,961,814			Thelin et al.
	4,220 E		003		6,965,489 6,965,563			Lee et al. Hospodor et al.
	5,682 E 5,714 E			Dang et al. Thelin	6,965,966			Rothberg et al.
	5,717 E			Yu et al.	6,967,799		11/2005	Lee
6,611	1,393 E	8/20		Nguyen et al.	6,968,422 6,968,450			Codilian et al.
	5,312 E			Hamlin et al. Christiansen et al.	6,973,495			Rothberg et al. Milne et al.
	9,748 E 7,481 E			Luu et al.	6,973,570		12/2005	
	4,193 E			Thelin	6,976,190			Goldstone
	7,810 E			Kupferman	6,983,316 6,986,007			Milne et al.
6,661	1,591 E	31 12/20		Rothberg	6,986,154			Procyk et al. Price et al.
6,687	5,772 E 7,073 E	31 12/20 31 2/20		Hamlin Kupferman	6,995,933		2/2006	Codilian et al.
	7,078 E			Kim	6,996,501			Rothberg
	7,850 E			Rothberg	6,996,669 7,002,926			Dang et al. Eneboe et al.
	0,523 E 0,882 E			Nguyen et al. Hanmann et al.	7,002,920			Hamlin
	1,198 E			Hamlin	7,006,316			Sargenti, Jr. et al.
	1,213 E	31 2/20	004	Luu et al.	7,009,820		3/2006	
	1,255 E		004	Rothberg et al.	7,023,639 7,024,491			Kupferman Hanmann et al.
	3,760 E 4,477 E			Krounbi et al. Lee	7,024,491			Luu et al.
	7,914 E			Hospodor et al.	7,024,614			Thelin et al.
	4,153 E			Rothberg et al.	7,027,716			Boyle et al.
	8,251 E			Boyle et al.	7,028,174 7,031,902			Atai-Azimi et al. Catiller
	0,951 E 1,628 E			Cloke Thelin	7,031,902			Kupferman
	1,635 E			Wang	7,046,488		5/2006	1
6,711	1,660 E	3/20	004	Milne et al.	7,050,252		5/2006	
	5,044 E			Lofgren et al.	7,054,937			Milne et al.
	4,982 E 5 3 20 E			Hamlin No. et al	7,055,000 7,055,167			Severtson Masters
	5,329 E 5,650 E			Ng et al. Rothberg	7,055,167			Kupferman
	5,693 E			Hamlin	7,062,398			Rothberg
6,744	4,772 E	31 6/20	004	Eneboe et al.	7,075,746	В1	7/2006	Kupferman
,	5,283 E			Dang	7,076,604			Thelin
6,75]	1,402 E	51 6/20	JU4	Elliott et al.	7,082,494	BI	7/2006	Thelin et al.

US 9,171,575 B1 Page 3

(56)		Referen	ces Cited	7,653,927			Kapner, III et al.
	U.S. F	PATENT	DOCUMENTS	7,656,603 7,656,763		2/2010 2/2010	Jin et al.
	0.5.1	2111111	BOCOMENTS	7,657,149	B2	2/2010	Boyle
7,088,538			Codilian et al.	7,672,072		3/2010	Boyle et al.
7,088,543		8/2006 8/2006	Singh et al.	7,673,075 7,688,540		3/2010 3/2010	Masiewicz Mei et al.
7,092,186 7,095,57			Codilian et al.	7,724,461		5/2010	McFadyen et al.
7,099,09	5 B1	8/2006	Subrahmanyam et al.	7,725,584		5/2010	Hanmann et al.
7,106,53			Bennett Barda et al.	7,730,295 7,760,458		6/2010 7/2010	Trinh
7,106,94° 7,110,20°			Boyle et al. Vasquez	7,768,776		8/2010	Szeremeta et al.
7,111,110	5 B1	9/2006	Boyle et al.	7,804,657			Hogg et al.
7,114,029		9/2006 10/2006		7,813,954 7,827,320		11/2010	Price et al. Stevens
7,120,73′ 7,120,800			Codilian et al.	7,839,588	В1	11/2010	Dang et al.
7,126,770	5 B1		Warren, Jr. et al.	7,843,660		11/2010	Yeo
7,129,763 7,133,600		10/2006 11/2006	Bennett et al.	7,852,596 7,859,782		12/2010	Boyle et al. Lee
7,136,24			Rothberg	7,872,822	B1	1/2011	Rothberg
7,146,094	4 B1	12/2006	Boyle	7,898,756 7,898,762		3/2011 3/2011	Wang Guo et al.
7,149,046 7,150,036			Coker et al. Milne et al.	7,900,037			Fallone et al.
7,155,616		12/2006		7,907,364	B2	3/2011	Boyle et al.
7,171,10			Masters et al.	7,929,234 7,933,087		4/2011 4/2011	Boyle et al. Tsai et al.
7,171,110 7,194,570		1/2007 3/2007	Wilshire	7,933,087		4/2011	Jung et al.
7,200,698			Rothberg	7,934,030	В1	4/2011	Sargenti, Jr. et al.
7,205,80	5 B1		Bennett	7,940,491 7,944,639		5/2011 5/2011	Szeremeta et al. Wang
7,206,49′ 7,215,496			Boyle et al. Kupferman et al.	7,944,039		5/2011	Rothberg et al.
7,215,77			Hamlin	7,974,029	B2	7/2011	Tsai et al.
7,237,054			Cain et al.	7,974,039 7,982,993		7/2011 7/2011	Xu et al. Tsai et al.
7,240,163 7,249,363		7/2007 7/2007	Price et al.	7,984,200			Bombet et al.
7,263,709		8/2007		7,990,648		8/2011	Wang
7,274,639			Codilian et al.	7,992,179 8,004,785		8/2011	Kapner, III et al. Tsai et al.
7,274,659 7,275,110			Hospodor Hanmann et al.	8,006,027		8/2011	Stevens et al.
7,280,302	2 B1	10/2007	Masiewicz	8,014,094		9/2011	Jin
7,292,774			Masters et al.	8,014,977 8,019,914		9/2011 9/2011	Masiewicz et al. Vasquez et al.
7,292,77: 7,296,284			Boyle et al. Price et al.	8,040,625	B1	10/2011	Boyle et al.
7,302,50	1 B1		Cain et al.	8,078,943 8,079,045		12/2011	Lee Krapf et al.
7,302,579 7,318,089		1/2007	Cain et al.	8,082,433		12/2011	Fallone et al.
7,319,806			Willner et al.	8,085,487		12/2011	Jung et al.
7,325,24			Boyle et al.	8,089,719 8,090,902		1/2012 1/2012	Dakroub Bennett et al.
7,330,323 7,346,790		2/2008 3/2008	Singh et al.	8,090,902			Blaha et al.
7,366,64			Masiewicz et al.	8,091,112			Elliott et al.
7,369,340			Dang et al.	8,094,396 8,094,401			Zhang et al. Peng et al.
7,369,343 7,372,650			Yeo et al. Kupferman	8,116,020		2/2012	
7,380,14	7 B1	5/2008	Sun	8,116,025			Chan et al.
7,392,340 7,404,013			Dang et al. Masiewicz	8,134,793 8,134,798			Vasquez et al. Thelin et al.
7,404,01.			Rothberg et al.	8,139,301			Li et al.
7,415,57	1 B1	8/2008	Hanan	8,139,310 8,144,419		3/2012	
7,436,610 7,437,502		10/2008 10/2008		8,145,452		3/2012 3/2012	Masiewicz et al.
7,440,214			Ell et al.	8,149,528	В1	4/2012	Suratman et al.
7,451,344	4 B1		Rothberg	8,154,812 8,159,768		4/2012 4/2012	Boyle et al. Miyamura
7,471,483 7,471,480			Ferris et al. Coker et al.	8,161,328		4/2012	Wilshire
7,486,060			Bennett	8,164,849	B1	4/2012	Szeremeta et al.
7,496,493			Stevens	8,174,780 8,190,575		5/2012	Tsai et al. Ong et al.
7,518,819 7,526,184			Yu et al. Parkinen et al.	8,194,338		6/2012	
7,539,92	4 B1	5/2009	Vasquez et al.	8,194,340	B1	6/2012	Boyle et al.
7,543,117		6/2009		8,194,341 8,201,066		6/2012 6/2012	
7,551,383 7,562,283			Kupferman Rothberg	8,201,000			Wang Dinh et al.
7,577,973	3 B1	8/2009	Kapner, III et al.	8,279,550	В1	10/2012	Hogg
7,596,79			Kapner, III et al.	8,281,218			Ybarra et al.
7,599,139 7,619,841			Bombet et al. Kupferman	8,285,923 8,289,656		10/2012 10/2012	
7,647,54		1/2010	Masiewicz	8,305,705	B1	11/2012	
7,649,704			Bombet et al.	8,307,156			Codilian et al.

US 9,171,575 B1 Page 4

(56)	Refere	nces Cited	8,625,224 B1	1/2014	Lin et al.
(50)	14010101	ices circu	8,625,225 B1	1/2014	
U.S	S. PATENT	DOCUMENTS	8,626,463 B2	1/2014	
			8,630,052 B1		Jung et al.
8,310,775 B1	11/2012	Boguslawski et al.	8,631,188 B1		Heath et al.
8,315,006 B1	11/2012	Chahwan et al.	8,635,412 B1		Wilshire
8,316,263 B1	11/2012	Gough et al.	8,661,193 B1		Cobos et al.
8,320,067 B1		Tsai et al.	8,665,547 B1		Yeo et al.
8,324,974 B1		Bennett	8,667,248 B1		Neppalli Malina et al
8,332,695 B2		Dalphy et al.	8,670,205 B1 8,671,250 B2	3/2014	Malina et al.
8,339,919 B1	12/2012		8,671,230 B2 8,681,442 B2	3/2014	
8,341,337 B1		Ong et al.	8,681,445 B1		Kermiche et al.
8,350,628 B1 8,356,184 B1		Bennett Meyer et al.	8,683,295 B1		Syu et al.
8,370,683 B1		Ryan et al.	8,687,306 B1		Coker et al.
8,375,225 B1		Ybarra	8,687,307 B1		Patton, III
8,375,274 B1		Bonke	8,687,313 B2		Selvaraj
8,380,922 B1		DeForest et al.	8,693,133 B1	4/2014	Lee et al.
8,390,948 B2	3/2013		8,698,492 B1		Mak et al.
8,390,952 B1		Szeremeta	8,699,171 B1	4/2014	
8,392,689 B1	3/2013	Lott	8,699,172 B1		Gunderson et al.
8,407,393 B1	3/2013	Yolar et al.	8,711,500 B1		Fong et al.
8,413,010 B1	4/2013	Vasquez et al.	8,711,506 B1		Giovenzana et al.
8,417,566 B2		Price et al.	8,711,665 B1		Abdul Hamid
8,421,663 B1		Bennett	8,717,694 B1 8,717,695 B1		Liew et al. Lin et al.
8,422,172 B1		Dakroub et al.	8,717,093 B1 8,730,612 B1		Haralson
8,427,770 B1		O'Dell et al.	8,743,502 B1		Bonke et al.
8,427,771 B1	4/2013		8,749,911 B1		Sun et al.
8,429,343 B1	4/2013	Wheelock et al.	8,753,146 B1		Szeremeta et al.
8,433,937 B1 8,433,977 B1		Vasquez et al.	8,755,136 B1		Ng et al.
8,441,909 B1		Thayamballi et al.	8,756,361 B1		Carlson et al.
8,456,980 B1		Thayamballi	8,760,782 B1		Garani et al.
8,458,526 B2		Dalphy et al.	8,760,792 B1	6/2014	Tam
8,462,466 B2		Huber	8,769,593 B1		Schwartz et al.
8,467,151 B1		Huber	8,773,793 B1	7/2014	McFadyen
8,483,027 B1	7/2013	Mak et al.	8,773,802 B1		Anderson et al.
8,489,841 B1		Strecke et al.	8,773,807 B1		Chia et al.
8,493,679 B1		Boguslawski et al.	8,773,957 B1		Champion et al.
8,499,198 B1		Messenger et al.	8,780,470 B1		Wang et al.
8,514,506 B1		Li et al.	8,782,334 B1		Boyle et al.
8,554,741 B1		Malina	8,786,976 B1		Kang et al.
8,560,759 B1		Boyle et al.	8,787,125 B1	7/2014	
8,576,509 B1 8,576,511 B1	11/2013	Coker et al.	8,792,196 B1	7/2014	
8,578,100 B1		Huynh et al.	8,792,200 B1		Tam et al.
8,578,242 B1		Burton et al.	8,797,667 B1		Barlow et al.
8,582,223 B1		Garani et al.	8,799,977 B1		Kapner, III et al.
8,582,231 B1		Kermiche et al.	8,817,413 B1		Knigge et al.
8,589,773 B1		Wang et al.	8,817,584 B1		Selvaraj
8,593,753 B1		Anderson	8,825,976 B1	9/2014	
8,599,512 B2	12/2013		8,825,977 B1		Syu et al.
8,605,379 B1	12/2013		2009/0113702 A1	5/2009	
8,611,031 B1	12/2013		2010/0306551 A1		Meyer et al.
8,611,032 B2		Champion et al.	2011/0226729 A1	9/2011	
8,612,798 B1	12/2013		2012/0159042 A1		Lott et al.
8,619,383 B1	12/2013	Jung et al.	2012/0275050 A1		Wilson et al.
8,619,508 B1 8,619,529 B1		Krichevsky et al. Liew et al.	2012/0281963 A1		Krapf et al.
8,619,529 B1 8,621,115 B1		Bombet et al.	2012/0324980 A1	12/2012	Nguyen et al.
8,621,113 B1 8,621,133 B1	12/2013		* cited by examiner		
0,021,133 D1	14/4013	Doyle	cited by examiner		

^{&#}x27; cited by examiner

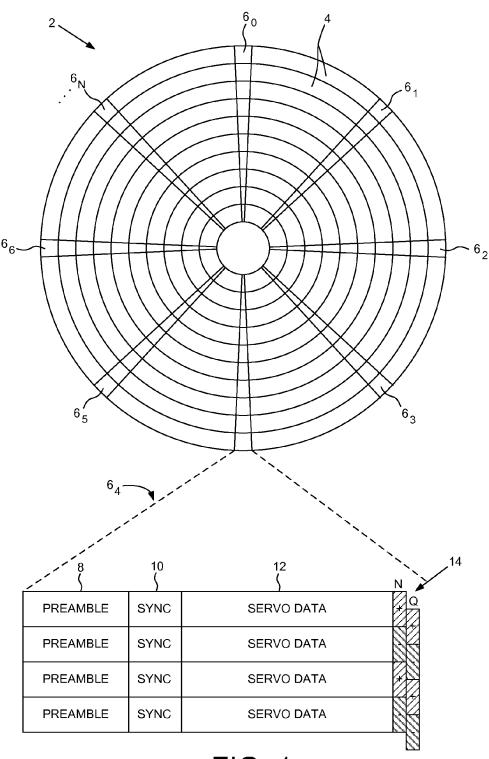
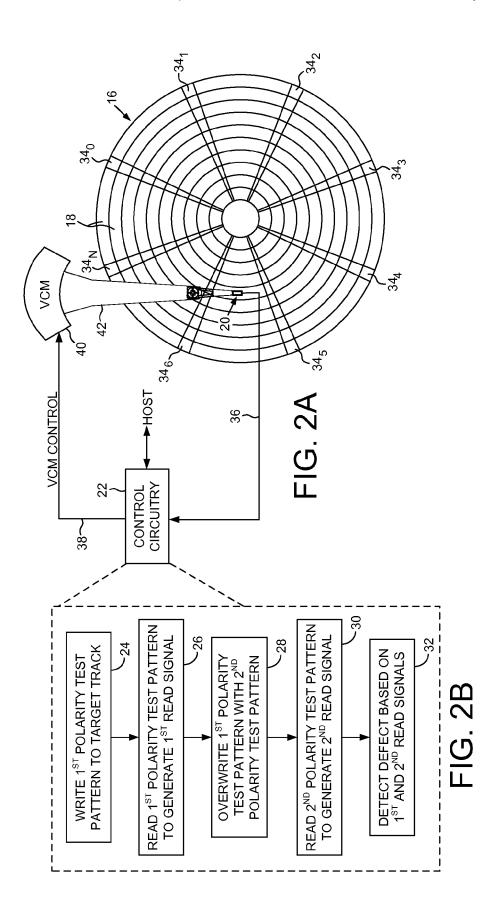
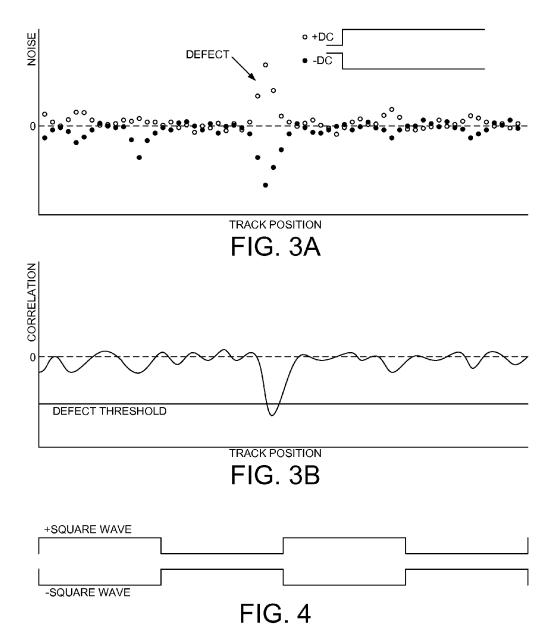




FIG. 1
(Prior Art)

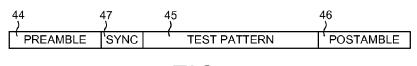
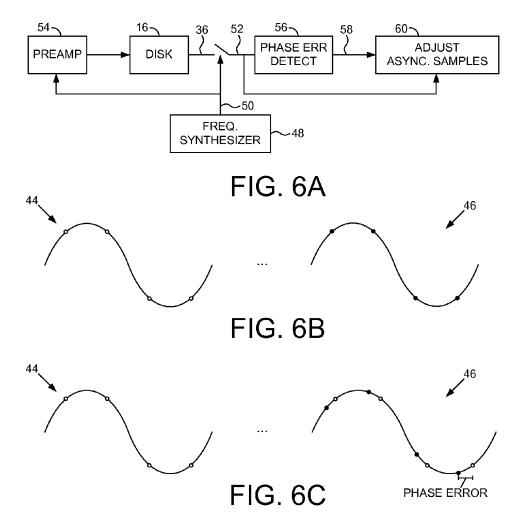



FIG. 5

1

DATA STORAGE DEVICE DETECTING MEDIA DEFECTS BY WRITING OPPOSITE POLARITY TEST PATTERN

BACKGROUND

Data storage devices such as disk drives comprise a disk and a head connected to a distal end of an actuator arm which is rotated about a pivot by a voice coil motor (VCM) to position the head radially over the disk. The disk comprises a plurality of radially spaced, concentric tracks for recording user data sectors and servo sectors. The servo sectors comprise head positioning information (e.g., a track address) which is read by the head and processed by a servo control 15 system to control the actuator arm as it seeks from track to

FIG. 1 shows a prior art disk format 2 as comprising a number of servo tracks 4 defined by servo sectors $\mathbf{6}_0$ - $\mathbf{6}_N$ recorded around the circumference of each servo track. Each 20 servo sector 6, comprises a preamble 8 for storing a periodic pattern, which allows proper gain adjustment and timing synchronization of the read signal, and a sync mark 10 for storing a special pattern used to symbol synchronize to a servo data information, such as a servo track address, used to position the head over a target data track during a seek operation. Each servo sector 6, further comprises groups of servo bursts 14 (e.g., N and Q servo bursts), which are recorded with a predetermined phase relative to one another and relative to the servo track centerlines. The phase based servo bursts 14 provide fine head position information used for centerline tracking while accessing a data track during write/read operations. A position error signal (PES) is generated by reading the servo data 12 and servo bursts 14, wherein the PES represents a measured position of the head relative to a centerline of a target servo track. A servo controller processes the PES to generate a control signal applied to a head actuator (e.g., a voice coil motor) in order to actuate the head radially over the 40 disk in a direction that reduces the PES.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a prior art disk format comprising a plurality 45 of tracks defined by servo sectors.

FIG. 2A shows a data storage device in the form of a disk drive comprising a head actuated over a disk.

FIG. 2B is a flow diagram according to an embodiment wherein a defect in a target track is detected by writing a test 50 pattern having a first polarity which is then overwritten with a test pattern having a polarity opposite the first polarity.

FIG. 3A shows an embodiment wherein a positive DC test pattern is written to a target track which is overwritten with a negative DC test pattern.

FIG. 3B shows an embodiment wherein a defect in the target track is detected when a correlation between the first and second read signals exceeds a negative threshold.

FIG. 4 shows an embodiment wherein the test pattern comprises a periodic test pattern in the form of a square wave.

FIG. 5 shows an embodiment wherein the test pattern is written with a preamble and a postamble.

FIG. 6A shows control circuitry according to an embodiment comprising a frequency synthesizer for generating an asynchronous sampling clock, and a phase error detector 65 operable to detect a phase error between the preamble and postamble.

2

FIG. 6B illustrates an example wherein the sampling frequency matches the rotation frequency of the disk, and therefore there is no phase error between the preamble and post-

FIG. 6C illustrates an example wherein an error between the sampling frequency and the rotation frequency of the disk results in a phase error between the preamble and postamble.

DETAILED DESCRIPTION

FIG. 2A shows a data storage device in the form of a disk drive according to an embodiment comprising a disk 16 comprising a plurality of tracks 18, and a head 20 actuated over the disk 16. The disk drive further comprises control circuitry 22 configured to execute the flow diagram of FIG. 2B, wherein a first test pattern having a first polarity is written to a target track (block 24), and the first test pattern is read to generate a first read signal (block 26). The first test pattern is overwritten with a second test pattern having a second polarity opposite the first polarity (block 28), and the second test pattern is read to generate a second read signal (block 30). A defect in the target track is detected based on the first read signal and the second read signal (block 32).

In the embodiment of FIG. 2A, the plurality of tracks 18 are field 12. The servo data field 12 stores coarse head positioning 25 defined by servo sectors 34_0 - 34_N written on the disk 16. In one embodiment, the plurality of tracks 18 comprise a plurality of servo tracks which define data tracks that may be recorded at the same or different radial density, wherein each data track may comprise a number of data sectors. The control circuitry 22 processes a read signal 36 emanating from the head 20 to demodulate the servo sectors 34_0 - 34_N and generate a position error signal (PES) representing an error between the actual position of the head and a target position relative to a target track. The control circuitry 22 filters the PES using a suitable compensation filter to generate a control signal 38 applied to a voice coil motor (VCM) 40 which rotates an actuator arm 42 about a pivot in order to actuate the head 20 radially over the disk 16 in a direction that reduces the PES. The servo sectors 34₀-34_N may comprise any suitable head position information, such as a track address for coarse positioning and servo bursts for fine positioning. The servo bursts may comprise any suitable pattern, such as an amplitude based servo pattern or a phase based servo pattern.

In one embodiment, the control circuitry 22 may detect defects on the disk 16 for one or more reasons, such as to map out defective data sectors to spare data sectors and/or to evaluate the quality of the recording media in general. In one embodiment, certain types of media defects may manifest as DC noise, particularly the media employed in Heat Assisted Magnetic Recording (HAMR) as compared to other types of media, such as the media employed in Perpendicular Magnetic Recording (PMR). For example, a HAMR media may comprise clusters of grains that may be either un-magnetized or magnetized orthogonal to the surrounding bit cells. In 55 order to detect this type of media defect, in one embodiment a test pattern is written to a target track with a first polarity and then overwritten with an opposite polarity. The resulting read signals (before and after the overwrite) are then evaluated in order to detect a defect caused by DC noise in the media. Any suitable part of the target track may be evaluated, such as by writing the test pattern to a single data sector, multiple data sectors, or one or more segments between the servo sectors $34_0 - 34_{N'}$

FIG. 3A illustrates an embodiment wherein the test pattern comprises a +DC test pattern and a -DC test pattern. For example, the target track may first be written with the +DC test pattern and then read to generate a first read signal. In the 3

embodiment of FIG. 3A, the first read signal is sampled to generate first signal samples (represented as white dots). The target track may then be overwritten with the –DC test pattern and then read to generate a second read signal which is sampled to generate second signal samples (represented as 5 black dots). The first signal samples and the second signal samples are then processed to detect a defect, for example, by evaluating a moving window of the signal samples.

FIG. 3A shows an example of how a defect on the disk 16 may manifest in the first and second signal samples. Because 10 the test pattern comprises a DC test pattern, the non-zero amplitude of the signal samples is caused by noise, such as a defect on the disk 16. In the example shown in FIG. 3A, the first and second signal samples generated when reading a defect in the media may comprise an amplitude of opposite 15 polarity due to a DC noise component of the defect. In one embodiment, the defect may be detected based on a correlation of the first and second signal samples. For example, in an embodiment shown in FIG. 3B a defect may be detected when the correlation exceeds a negative threshold. As described 20 above, the correlation may be generated over any suitable length window of the first and second signal samples, and in one embodiment, the correlation may be generated over a number of different length windows in order to detect defects of varying length. Other embodiments may generate any 25 other suitable metric to detect a defect on the disk 16, such by generating a difference between the first and second signal samples and comparing the difference to positive and negative thresholds.

Any suitable test pattern may be written to the target track, 30 including a periodic test pattern as shown in the embodiment of FIG. 4. In the example of FIG. 4, the first test pattern comprises a square wave having a first polarity, and the second test pattern comprises a similar square wave having a polarity opposite the first polarity. Any suitable frequency 35 may be selected for the periodic pattern, wherein in one embodiment the frequency is selected so that the control circuitry 22 may maintain proper timing synchronization as the test pattern is read, thereby enabling accurate timing alignment of the first and second signal samples when search- 40 ing for defects (e.g., when computing a sliding window correlation between the first and second signal samples). For example, an 8T periodic pattern (where T is a bit cell period) may be employed so that a transition occurs every eighth signal sample, thereby providing the timing information 45 needed to synchronize the signal samples.

In another embodiment, when the test pattern comprises a long sequence between transitions (or no transitions as with a DC test pattern), the control circuitry 22 may write a preamble 44 at the beginning of the test pattern 45 and a post- 50 amble 46 at the end of the test pattern 45 as illustrated in FIG. 5 which may be processed in order to synchronize the first signal samples to the second signal samples. This embodiment may be understood with reference to FIG. 6A which shows control circuitry according to an embodiment wherein 55 a frequency synthesizer 48 generates a sampling clock 50 for sampling the read signal 36 asynchronously to generate asynchronous signal samples 52. In one embodiment, the sampling clock 50 is generated at the same frequency used to write the test pattern 45 to the disk 16; that is, the frequency 60 synthesizer 48 applies the sampling clock 50 to a preamp 54 during the write operation so that the test pattern 45 is written to the disk 16 at a target frequency. If when reading the test pattern 45 the disk is rotating at the same frequency as when the test pattern 45 was written, then there will be no frequency error between the sampling clock 50 and the rotation frequency of the disk. Consequently, there will be no phase error

4

between the signal samples of the preamble 44 and the signal samples of the postamble 46 as illustrated in FIG. 6B. However, if when reading the test pattern 45 the disk is rotating at a different frequency as when the test pattern 45 was written, then the frequency error will induce a phase error between the signal samples of the preamble 44 and the signal samples of the postamble 46 as illustrated in FIG. 6C. Accordingly in the embodiment of FIG. 6A, a phase error detector 56 processes the asynchronous signal samples 52 to detect the phase error 58 between the postamble 46 and the preamble 44. The phase error 58 is then used at block 60 to adjust the asynchronous signal samples representing the test pattern 45 (e.g., using suitable upsampling and/or decimation), thereby compensating for the frequency error between the first and second signal samples representing the first and second polarities of the test pattern.

In one embodiment, the test pattern 45 is read multiple times to generate a plurality of buffered asynchronous signal samples. After adjusting for the frequency error in each of the buffered sequences (and in one embodiment a phase error between the sequences), the sequences are amplitude normalized and averaged to generate a nominal sequence. In one embodiment, this process is repeated for both polarities of the test pattern, and then the resulting nominal sequences of signal samples are evaluated to detect defects.

In the embodiment of FIG. 5, a sync mark 47 may be written following the preamble 44 which is used to detect the beginning of the test pattern 45. In addition, the sync mark 47 in each sequence generated during each read of the test pattern may also be used to coarsely phase align (within a signal sample period) the test pattern signal samples. In one embodiment, since the data may be sampled asynchronously without employing any real-time timing recovery, the sync mark 47 may be recorded as a low frequency, long sequence of bits (e.g., 160 bits) which helps ensure accurate detection of the sync mark 47 within the asynchronous signal samples.

Any suitable control circuitry may be employed to implement the flow diagrams in the above embodiments, such as any suitable integrated circuit or circuits. For example, the control circuitry may be implemented within a read channel integrated circuit, or in a component separate from the read channel, such as a disk controller, or certain operations described above may be performed by a read channel and others by a disk controller. In one embodiment, the read channel and disk controller are implemented as separate integrated circuits, and in an alternative embodiment they are fabricated into a single integrated circuit or system on a chip (SOC). In addition, the control circuitry may include a suitable preamp circuit implemented as a separate integrated circuit, integrated into the read channel or disk controller circuit, or integrated into a SOC.

In one embodiment, the control circuitry comprises a microprocessor executing instructions, the instructions being operable to cause the microprocessor to perform the flow diagrams described herein. The instructions may be stored in any computer-readable medium. In one embodiment, they may be stored on a non-volatile semiconductor memory external to the microprocessor, or integrated with the microprocessor in a SOC. In another embodiment, the instructions are stored on the disk and read into a volatile semiconductor memory when the disk drive is powered on. In yet another embodiment, the control circuitry comprises suitable logic circuitry, such as state machine circuitry.

While the above examples concern a disk drive, the various embodiments are not limited to a disk drive and can be applied to other data storage devices and systems, such as magnetic tape drives, solid state drives, hybrid drives, etc. In addition, 5

some embodiments may include electronic devices such as computing devices, data server devices, media content storage devices, etc. that comprise the storage media and/or control circuitry as described above.

The various features and processes described above may be 5 used independently of one another, or may be combined in various ways. All possible combinations and subcombinations are intended to fall within the scope of this disclosure. In addition, certain method, event or process blocks may be omitted in some implementations. The methods and processes described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described tasks or events may be performed in an order other than that specifically disclosed, or multiple may 15 be combined in a single block or state. The example tasks or events may be performed in serial, in parallel, or in some other manner. Tasks or events may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently 20 than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.

While certain example embodiments have been described, these embodiments have been presented by way of example 25 only, and are not intended to limit the scope of the inventions disclosed herein. Thus, nothing in the foregoing description is intended to imply that any particular feature, characteristic, step, module, or block is necessary or indispensable. Indeed, the novel methods and systems described herein may be 30 embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the embodiments disclosed herein.

What is claimed is:

- 1. A data storage device comprising:
- a disk comprising a plurality of tracks;
- a head actuated over the disk; and
- control circuitry configured to:

write a first test pattern having a first polarity to a target

read the first test pattern to generate a first read signal; overwrite the first test pattern with a second test pattern having a second polarity opposite the first polarity;

read the second test pattern to generate a second read signal; and

detect a defect in the target track based on the first read signal and the second read signal.

2. The data storage device as recited in claim 1, wherein the 50 control circuitry is further configured to:

sample the first read signal to generate first signal samples; sample the second read signal to generate second signal samples; and

second signal samples.

3. The data storage device as recited in claim 2, wherein the control circuitry is further configured to detect the defect in the target track based on a moving window of the first and second signal samples.

6

- 4. The data storage device as recited in claim 2, wherein the control circuitry is further configured to detect the defect in the target track based on a correlation of the first and second signal samples.
- 5. The data storage device as recited in claim 4, wherein the control circuitry is further configured to detect the defect in the target track when the correlation exceeds a negative threshold.
 - **6**. The data storage device as recited in claim **1**, wherein: the first test pattern comprises a DC test pattern; and the second test pattern comprises a DC test pattern.
 - 7. The data storage device as recited in claim 1, wherein: the first test pattern comprises a periodic test pattern; and the second test pattern comprises a periodic test pattern.
- 8. The data storage device as recited in claim 1, wherein the defect in the target track increases a DC noise in the first and second read signal.
- 9. The data storage device as recited in claim 8, wherein the DC noise in the first read signal is opposite in polarity from the DC noise in the second read signal.
- 10. A method of operating a data storage device, the method comprising:

writing a first test pattern having a first polarity to a target track on a disk;

reading the first test pattern to generate a first read signal; overwriting the first test pattern with a second test pattern having a second polarity opposite the first polarity;

reading the second test pattern to generate a second read signal; and

detecting a defect in the target track based on the first read signal and the second read signal.

11. The method as recited in claim 10, further comprising: sampling the first read signal to generate first signal samples:

sampling the second read signal to generate second signal samples; and

detecting the defect in the target track based on the first and second signal samples.

- 12. The method as recited in claim 11, further comprising 40 detecting the defect in the target track based on a moving window of the first and second signal samples.
 - 13. The method as recited in claim 11, further comprising detecting the defect in the target track based on a correlation of the first and second signal samples.
 - 14. The method as recited in claim 13, further comprising detecting the defect in the target track when the correlation exceeds a negative threshold.
 - 15. The method as recited in claim 10, wherein: the first test pattern comprises a DC test pattern; and the second test pattern comprises a DC test pattern.
 - **16**. The method as recited in claim **10**, wherein: the first test pattern comprises a periodic test pattern; and the second test pattern comprises a periodic test pattern.
- 17. The method as recited in claim 10, wherein the defect in detect the defect in the target track based on the first and 55 the target track increases a DC noise in the first and second read signal.
 - 18. The method as recited in claim 17, wherein the DC noise in the first read signal is opposite in polarity from the DC noise in the second read signal.